Syllabus for written examination for admission in various PG programs of Mechanical Engineering Department.

The research at Mechanical Engineering Department, IIT Delhi is classified into following four broad areas:

- Design Engineering
- Thermal Engineering
- Production Engineering
- Industrial Engineering

Detailed syllabus for Design, Thermal, Production and Industrial engineering components

Design Engineering:
Engineering Mechanics: Free-body diagrams and equilibrium; trusses and frames; virtual work; kinematics and dynamics of particles and of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations, collisions.

Mechanics of Materials: Stress and strain, elastic constants, Poisson's ratio; Mohr’s circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; deflection of beams; torsion of circular shafts; Euler’s theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength.

Theory of Machines: Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope.

Vibrations: Free and forced vibration of single degree of freedom systems, effect of damping; vibration isolation; resonance; critical speeds of shafts.

Machine Design: Design for static and dynamic loading; failure theories; fatigue strength and the S-N diagram; principles of the design of machine elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches, springs.

Fundamentals of Finite Element Analysis

Fundamentals of Tribology and Lubrication

Thermal Engineering:
Fluid Mechanics: Fluid properties; fluid statics, manometry, buoyancy, forces on submerged bodies, stability of floating bodies; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli’s equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings.

Heat-Transfer: Modes of heat transfer; one dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler's charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, Stefan-Boltzmann law, Wien's displacement law, black and grey surfaces, view factors, radiation network analysis.

Thermodynamics: Thermodynamic systems and processes; properties of pure substances, behaviour of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations.

Production Engineering:
Casting: types of casting processes and applications; patterns – types and materials; allowances; moulds and cores – materials, making, and testing; casting techniques of cast iron, steels and nonferrous metals and alloys; analysis of solidification and microstructure development; design of gating and riser; origin of defects.
Metal Forming: Stress-strain relations in elastic and plastic deformation; concept of flow stress; hot and cold working – forging, rolling, extrusion and wire drawing; sheet metal working processes – blanking, bending and deep drawing; ideal work and slab analysis; origin of metal working defects.
Joining of materials: Principles of fusion welding processes (manual metal arc, MIG, TIG, plasma arc, submerged arc welding processes)–different heat sources (flame, arc, resistive, laser, electron beam), and heat transfer and associated losses, flux application, feeding of filler rod; Principles of solid-state welding processes (friction, explosive welding, ultrasonic welding processes); Principles of adhesive, brazing and soldering processes; Origins of welding defects.
Powder processing: Production of metal/ceramic powders, compaction and sintering of metals and ceramic powders.
Polymers and Composites: Plastic processing – injection, compression and blow molding, extrusion, calendaring and thermoforming; molding of composites.
Machine Tools and Machining: Basic machine tools like centre lathe, milling machine, and drilling machine – construction and kinematics; machining processes - turning, taper turning, thread cutting, drilling, boring, milling, gear cutting, thread production, grinding; geometry of single point cutting tools, chip formation, cutting forces, specific cutting energy and power requirements, Merchant’s analysis; basis of selection of machining parameters; tool materials, tool wear and tool life, economics of machining, thermal aspects of machining, cutting fluids, machinability; Jigs and fixtures – principles, applications, and design.
Non-traditional Manufacturing: Principles, applications, effect of process parameters on MRR and product quality of non-traditional machining processes – USM, AJM, WJM, AWJM, EDM and Wire cut EDM, LBM, EBM, PAM, CHM, ECM.
Computer Integrated Manufacturing: Basic concepts of CAD – geometric modeling, CAM – CNC and robotics – configurations, drives and controls, Group Technology and its applications – CAPP, cellular manufacturing and FMS.
Metrology and Inspection: Limits, fits, and tolerances, gauge design, interchangeability, selective assembly; linear, angular, and form measurements (straightness, squareness, flatness, roundness, and cylindricity) by mechanical and optical methods; inspection of screw threads and gears; surface finish measurement by contact and non-contact methods; tolerance analysis in manufacturing and assembly.
Quality management: Quality – concept and costs; quality assurance; statistical quality control, acceptance sampling, zero defects, six sigma; total quality management; ISO 9000.
Reliability and Maintenance: Reliability, availability and maintainability; distribution of failure and repair times; determination of MTBF and MTTR, reliability models; determination of system reliability; preventive maintenance and replacement.
Industrial Engineering:

Probability & Statistics: Definition and basic rules of Probability, Random Variables & their distributions (pdf, cdf, expectation etc), Key Random Variables such as Gaussian, Exponential, Poisson, Measures of central tendency such as Mean-Median-Mode.

Operations research: Basic linear algebra; linear programming – problem formulation, simplex method, duality and sensitivity analysis; transportation and assignment models; network flow models; basic concepts and methods of nonlinear optimization; dynamic programming; simulation – manufacturing applications.

Production control: Forecasting techniques – causal and time series models, moving average, exponential smoothing, trend and seasonality; aggregate production planning; master production scheduling; MRP and MRP-II; routing, scheduling and priority dispatching; Push and pull production systems, concept of JIT manufacturing system; Logistics, distribution, and supply chain management; Inventory – functions, costs, classifications, deterministic inventory models, quantity discount; perpetual and periodic inventory control systems.