Summer Ph.D. Admissions – 2021-2022

Syllabus for Written Test

Non-programmable Scientific Calculators are allowed and required for written test.

The research at Mechanical Engineering Department, IIT Delhi is classified into following four broad areas:

- Design Engineering
- Thermal Engineering
- Production Engineering
- Industrial Engineering

Admission in Design Engineering: Syllabus for Written test:

Engineering Mechanics: Free-body diagrams and equilibrium; trusses and frames; virtual work; kinematics and dynamics of particles and of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations, collisions.

Mechanics of Materials: Stress and strain, elastic constants, Poisson's ratio; Mohr’s circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; deflection of beams; torsion of circular shafts; Euler’s theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength.

Theory of Machines: Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope.

Vibrations: Free and forced vibration of single degree of freedom systems, effect of damping; vibration isolation; resonance; critical speeds of shafts.

Machine Design: Design for static and dynamic loading; failure theories; fatigue strength and the S-N diagram; principles of the design of machine elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches, springs.

Fundamentals of Finite Element Analysis

Fundamentals of Tribology and Lubrication
Non-programmable Scientific Calculators are allowed and required for written test.

Admission in Thermal Engineering: Syllabus for Written test

Fluid Mechanics: Fluid properties; fluid statics, manometry, buoyancy, forces on submerged bodies, stability of floating bodies; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli’s equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings.

Heat-Transfer: Modes of heat transfer; one dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler's charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, Stefan-Boltzmann law, Wien's displacement law, black and grey surfaces, view factors, radiation network analysis.

Thermodynamics: Thermodynamic systems and processes; properties of pure substances, behaviour of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations.

Applications: **Power Engineering**: Air and gas compressors; vapour and gas power cycles, concepts of regeneration and reheat. **I.C. Engines**: Air-standard Otto, Diesel and dual cycles. **Refrigeration and air-conditioning**: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychrometric chart, basic psychrometric processes. **Turbomachinery**: Impulse and reaction principles, velocity diagrams, Pelton-wheel, Francis and Kaplan turbines.
Summer Ph.D. Admissions – 2021-2022

Non-programmable Scientific Calculators are allowed and required for written test.

Admission in Production Engineering: Syllabus for Written test

Casting: types of casting processes and applications; patterns – types and materials; allowances; moulds and cores – materials, making, and testing; casting techniques of cast iron, steels and nonferrous metals and alloys; analysis of solidification and microstructure development; design of gating and riser; origin of defects.

Metal Forming: Stress-strain relations in elastic and plastic deformation; concept of flow stress; hot and cold working – forging, rolling, extrusion and wire drawing; sheet metal working processes – blanking, bending and deep drawing; ideal work and slab analysis; origin of metal working defects.

Joining of materials: Principles of fusion welding processes (manual metal arc, MIG, TIG, plasma arc, submerged arc welding processes)–different heat sources (flame, arc, resistive, laser, electron beam), and heat transfer and associated losses, flux application, feeding of filler rod; Principles of solid state welding processes (friction, explosive welding, ultrasonic welding processes); Principles of adhesive, brazing and soldering processes; Origins of welding defects.

Powder processing: Production of metal/ceramic powders, compaction and sintering of metals and ceramic powders.

Polymers and Composites: Plastic processing – injection, compression and blow molding, extrusion, calendaring and thermoforming; molding of composites.

Machine Tools and Machining: Basic machine tools like centre lathe, milling machine, and drilling machine – construction and kinematics; machining processes - turning, taper turning, thread cutting, drilling, boring, milling, gear cutting, thread production, grinding; geometry of single point cutting tools, chip formation, cutting forces, specific cutting energy and power requirements, Merchant’s analysis; basis of selection of machining parameters; tool materials, tool wear and tool life, economics of machining, thermal aspects of machining, cutting fluids, machinability; Jigs and fixtures – principles, applications, and design

Non-traditional Manufacturing: Principles, applications, effect of process parameters on MRR and product quality of non-traditional machining processes – USM, AJM, WJM, AWJM, EDM and Wire cut EDM, LBM, EBM, PAM, CHM, ECM.
Computer Integrated Manufacturing: Basic concepts of CAD – geometric modeling, CAM – CNC and robotics – configurations, drives and controls, Group Technology and its applications – CAPP, cellular manufacturing and FMS.

Metrology and Inspection: Limits, fits, and tolerances, gauge design, interchangeability, selective assembly; linear, angular, and form measurements (straightness, squareness, flatness, roundness, and cylindricity) by mechanical and optical methods; inspection of screw threads and gears; surface finish measurement by contact and non-contact methods; tolerance analysis in manufacturing and assembly.

Quality management: Quality – concept and costs; quality assurance; statistical quality control, acceptance sampling, zero defects, six sigma; total quality management; ISO 9000.

Reliability and Maintenance: Reliability, availability and maintainability; distribution of failure and repair times; determination of MTBF and MTTR, reliability models; determination of system reliability; preventive maintenance and replacement.
Non-programmable Scientific Calculators are allowed and required for written test.

Admission in Industrial Engineering: Syllabus for Written test

Product Design and Development: Principles of good product design, tolerance design; quality and cost considerations; product life cycle; standardization, simplification, diversification, value engineering and analysis, concurrent engineering; comparison of production alternatives.

Work System Design: Taylor’s scientific management, Gilbreths’s contributions; productivity – concepts and measurements; methodstudy, micro-motion study, principles of motion economy; work measurement – time study, work sampling, standard data, PMTS; ergonomics; job evaluation, merit rating, incentive schemes, and wage administration.

Facility Design: Facility location factors and evaluation of alternate locations; types of plant layout and their evaluation; computer aided layout design techniques; assembly line balancing; materials handling systems.

Operations research: Basic probability concepts and linear algebra; linear programming – problem formulation, simplex method, duality and sensitivity analysis; transportation and assignment models; network flow models; basic concepts and methods of nonlinear optimization; Markovian queuing models; dynamic programming; simulation – manufacturing applications.

Engineering Economy and Costing: Elementary cost accounting and methods of depreciation; break-even analysis, techniques for evaluation of capital investments, financial statements, time-cost trade-off, resource leveling.

Production control: Forecasting techniques – causal and time series models, moving average, exponential smoothing, trend and seasonality; aggregate production planning; master production scheduling; MRP and MRP-II; routing, scheduling and priority dispatching; Push and pull production systems, concept of JIT manufacturing system; Logistics, distribution, and supply chain management; Inventory – functions, costs, classifications, deterministic inventory models, quantity discount; perpetual and periodic inventory control systems.

Project management – PERT and CPM.